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Neurodevelopmental disorders – including attention-deficit/hyperactivity disorder (ADHD), 

autism spectrum disorder, communication disorders, intellectual disability, motor disorders, 

specific learning disorders, and tic disorders – manifest themselves early in development. 

Valid, reliable and broadly usable biomarkers supporting a timely diagnosis of these disorders 

would be highly relevant from a clinical and public health standpoint. We conducted the first 

systematic review of studies on candidate diagnostic biomarkers for these disorders in children 

and adolescents. We searched Medline and EMBASE + EMBASE Classic with terms relating 

to biomarkers until April 6, 2022, and conducted additional targeted searches for genome-

wide association studies (GWAS) and neuroimaging or neurophysiological studies conducted 

by international consortia. We considered a candidate biomarker as promising if it was 

reported in at least two independent studies providing evidence of sensitivity and specificity of 

at least 80%. After screening 10,625 references, we retained 795 studies (375 biochemical, 

214 neuroimaging, 133 neurophysiological and 68 neuropsychological studies, and five 

GWAS), including a total of approximately 120,000 cases and 176,000 controls. While the 

majority of the studies focused simply on associations, we could not find any biomarker for 

which there was evidence – from two or more studies from independent research groups, with 

results going into the same direction – of specificity and sensitivity of at least 80%. Other 

important metrics to assess the validity of a candidate biomarker, such as positive predictive 

value and negative predictive value, were infrequently reported. Limitations of the currently 

available studies include mostly small sample size, heterogeneous approaches and candidate 

biomarker targets, undue focus on single instead of joint biomarker signatures, and incomplete 

accounting for potential confounding factors. Future multivariable and multi-level biomarker 

approaches may be best suited to find valid candidate biomarkers, which will then need to be 

validated in external, independent samples and then, importantly, tested in terms of feasibility 

and cost-effectiveness, before they can be implemented in daily clinical practice. 

 

Key words: Biological markers, neurodevelopmental disorders, ADHD, autism spectrum 

disorder, communication disorders, intellectual disability, motor disorders, specific learning 

disorders, tic disorders, genome-wide association studies, neuroimaging, neurophysiology 
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Limitations related to the subjective nature of psychiatric diagnoses have prompted, in the 

past decades, several lines of investigation aimed at identifying valid biomarkers that can 

assist in the diagnosis, prediction, prognosis and management of mental health conditions.  

According to the US Food and Drug Administration (FDA) - National Institute of Health 

(NIH) Biomarker Working Group, a biomarker is defined as “a characteristic that is measured 

as an indicator of normal biological processes, pathogenic processes or responses to an 

exposure or intervention”1. Based on their main clinical application, biomarkers can be 

grouped as: a) diagnostic, used to detect or confirm the presence of a disease or medical 

condition or to identify homogeneous subtypes of the disease; b) monitoring, to monitor the 

status of a disease and the response to a treatment; c) pharmacodynamic, to evaluate the 

response to a clinical intervention; d) predictive, to predict the probability to develop any effect 

following a clinical intervention; e) prognostic, to identify the probability of developing a clinical 

event in individuals with a disease or a clinical condition; f) safety, to evaluate the probability 

of developing an adverse event following an intervention; and g) susceptibility/risk, to quantify 

the risk of an individual to develop a disease or medical condition2. 

Valid and usable at scale biomarkers, if identified, promise to allow the clinical 

implementation of precision medicine in psychiatry3-7, whereby: a) individual patients would 

receive the proper diagnosis, and therefore proper treatment, more quickly; b) they would be 

matched more accurately to the treatments they are most likely to respond to; c) treatment 

could be started before symptoms reach a severe level and/or lead to dysfunction, increasing 

the likelihood of expedited recovery; d) clinicians could more easily identify who is most at risk 

for relapse and recurrence.  

However, the path for the identification of a biological characteristic as a valid biomarker 

in real-world clinical settings is a long one, and needs to follow rigorous steps. The biomarker 

needs first to be sensitive, i.e., accurately identify as positive those individuals who have the 

outcome of interest, and specific, namely, accurately label as negative those individuals who 

do not have the outcome of interest. Although there are no established benchmarks for these 

metrics, quantitative measures that allow diagnostic accuracy with at least 80% sensitivity and 

80% specificity are often considered as clinically useful8.  

The consensus report by the American Psychiatric Association (APA) Work Group on 

Neuroimaging Markers of Psychiatric Disorders suggested that a promising biomarker should 

have two or more independent well-powered studies providing evidence of sensitivity and 

specificity at least of 80%9. In addition, a biomarker would need to: a) have good positive 

predictive value (PPV), which refers to the proportion of individuals who have the outcome of 

interest among those who tested positive; b) have good negative predictive value (NPV), 

indicating the proportion of individuals who do not have the outcome of interest among those 

who tested negative; c) have good internal validity, i.e., measure the intended feature in an 
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unbiased way, without relevant influence of confounding factors; d) be externally valid, so that 

the results of the studies assessing the candidate biomarker are generalizable to the 

population of interest in real-life clinical settings; and e) be reliable, in terms of test-retest 

reliability (i.e., being consistent with itself when measured on several occasions) and inter-

rater reliability (i.e., being consistent when measured across different raters)10. Furthermore, 

a biomarker should change in a dynamic and reliable way in relation to the progress/change 

of the clinical condition2.  

Steps for biomarker discovery should therefore include an initial phase where a clinically 

relevant question is identified; a phase testing internal validation, ruling out the possible role 

of confounding factors; a subsequent phase where external validation is tested, assessing 

PPV and NPV in independent, targeted samples; and a last phase where the biomarker is 

tested to assess whether it brings a significant benefit in relation to standard clinical practice, 

with acceptable number needed to assess (NNA) and number needed to treat (NNT), i.e. the 

number of individuals that should be assessed or treated in order to benefit one additional 

individual compared to those who are not assessed or treated. Crucially, this last phase should 

also assess if the biomarker is cost-effective in relation to standard practice10. 

Based on the pathophysiological overlap across disorders, it has been suggested that at 

least some of the candidate biomarkers may have a transdiagnostic nature across mental 

health conditions11. However, for at least some peripheral biomarkers, it is possible that their 

transdiagnostic nature be related to the chronic stress or allostatic load associated with a 

variety of psychiatric conditions12. The notion of transdiagnosticity of peripheral biomarkers 

has been supported by a systematic review showing that, out of the six molecules most 

commonly referred to as “biomarkers” in studies of schizophrenia, major depressive disorder 

and bipolar disorder, five – brain-derived neurotrophic factor (BDNF), tumor necrosis factor 

(TNF)-alpha, interleukin (IL)-6, C-reactive protein (CRP), and cortisol – were proposed across 

these disorders12, even though without a rigorous transdiagnostic framework. Furthermore, a 

systematic review and meta-analysis of electrophysiological correlates of performance 

monitoring in four common childhood disorders – attention-deficit/hyperactivity disorder 

(ADHD), autism spectrum disorder (ASD), Tourette’s syndrome, and obsessive-compulsive 

disorder – found a significant overlap in electrophysiological markers across these 

disorders13,14.  

Recent umbrella reviews have shown that, in the case of many putative biomarkers for 

ASD and ADHD, most meta-analyses claiming significant associations were likely inflated by 

high risk of bias, including excess of significance bias15-17. By pooling different studies and 

increasing power, meta-analyses frequently find significant results. However, in this specific 

field, what determines the credibility of a diagnostic biomarker is replication of findings in terms 
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of specificity, sensitivity, accuracy, and predictive value9, rather than a pooled effect size of 

association. Hence, a systematic review accounting for these factors is needed.  

In the present systematic review, we focus on diagnostic biomarkers of 

neurodevelopmental disorders, alongside oppositional and conduct disorders, in children and 

adolescents.  

Neurodevelopmental disorders is an umbrella term encompassing a broad range of 

conditions characterized by impaired development of cognitive, social or motor functions, or 

atypical functioning, usually manifesting themselves from early childhood, and having a steady 

course without marked remissions or relapses18,19. The conceptualization and grouping of 

these disorders have changed over time and are still a matter of debate. Currently, the ICD-

1120 includes ADHD, ASD, communication disorders, intellectual disability, motor disorders, 

specific learning disorders (involving reading, writing and arithmetic), and tic disorders.  

Neurodevelopmental disorders are highly heterogeneous in terms of their epidemiology21, 

clinical characteristics, causes22, burden, treatment responses and tolerability23,24, and 

outcomes25. Notably, oppositional defiant disorder (ODD) and conduct disorders (CD) are 

often comorbid with neurodevelopmental disorders, in particular ADHD26.  

The level of overlap between neurodevelopmental disorders and their symptom 

dimensions is substantial. This is accounted for by shared or correlated risk factors, and 

common or overlapping molecular and neuronal mechanisms. While this co-occurrence 

supports the rationale for grouping these disorders together, from a clinical standpoint it is also 

relevant to recognize them as individual entities. Indeed, specific, distinct diagnostic 

categories allow clinicians to communicate about patients’ characteristics  with each other and 

with the patients and their family members/caregivers. Furthermore, patients with different 

categorical diagnoses respond to different treatments. For instance, psychostimulants are 

effective for ADHD, and so-called antipsychotics can decrease the severity of tics, but 

psychostimulants are not effective for tics, and antipsychotics do not improve attention 

regulation difficulties of ADHD. 

While previous systematic reviews, meta-analyses or umbrella reviews have provided a 

synthesis of the evidence on specific biomarkers in specific disorders, for example on 

peripheral biomarkers in ADHD16,27 or ASD15, no systematic review has been conducted so 

far covering a broad range of biomarkers across neurodevelopmental disorders. 

We aimed to fill this gap by conducting a systematic review of studies on promising 

candidate diagnostic biomarkers in children and/or adolescents with any neurodevelopmental 

disorder or with ODD or CD. We aimed to assess: a) which are the candidate biochemical, 

genetic, neuroimaging, neurophysiological and neuropsychological biomarkers that have been 

replicated across studies as being significantly associated with the diagnosis of specific 

neurodevelopmental disorders; b) how many of these biomarkers could be defined as 
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promising, based on specificity and sensitivity at least of 80% in two or more studies; and c) 

for how many of these candidate biomarkers, internal as well as external validation – 

assessing sensitivity, specificity, PPV and NPV – have been implemented, alongside an 

evaluation of the cost-effectiveness of the biomarker; and d) to what extent biomarkers are 

disorder-specific or transdiagnostic. 

 

 

METHODS 

 

This systematic review was based on a pre-registered protocol (available at 

https://osf.io/wp4je/?view_only=8c349f45a9ac441490981acf946c8d9a) and was conducted 

in accordance with the 2020 Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) statement28. 

  

Search  

 

We searched Medline and EMBASE + EMBASE Classic, from inception until April 6, 2022. 

We did not apply any limit in terms of language or type of document. We used terms related 

to neurodevelopmental disorders (alongside ODD and CD) and “biomarker” or equivalent 

(“marker”, “diagnostic test”, and “endophenotype”), in order to retrieve studies assessing what 

the study authors deemed to be a potential biomarker. The exact search syntax is reported in 

the supplementary information.  

Additionally, we searched for the largest genome-wide association studies (GWAS), as 

GWAS are typically based on meta-analyses of increasing numbers of samples and, as such, 

many previous smaller studies are sub-samples of the largest available GWAS, which will be 

best powered and use the latest methodologies and best practices. We also searched for 

neuroimaging or neurophysiological studies conducted by international consortia.  

 

Inclusion/exclusion criteria 

 

We included any observational study with a comparison group, assessing children or 

adolescents (mean age: 18 years or less) presenting with any (one or more) of the following 

disorders (reported here according to the ICD-11), provided that they were diagnosed using 

the ICD (9, 10 or 11) or the DSM (III, III-R, IV, IV-TR, 5): 6A00 Disorders of Intellectual 

Development; 6A01 Developmental Speech or Language Disorders; 6A01.0 Developmental 

Speech Sound Disorder; 6A01.1 Developmental Speech Fluency Disorder; 6A01.2 

Developmental Language Disorder; 6A02 Autism Spectrum Disorder; 6A03 Developmental 

https://osf.io/wp4je/?view_only=8c349f45a9ac441490981acf946c8d9a
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Learning Disorder; 6A04 Developmental Motor Coordination Disorder; 6A05 Attention Deficit 

Hyperactivity Disorder; 6A06 Stereotyped Movement Disorder; 6A0Y Other Specified 

Neurodevelopmental Disorder; 8A05.00 Tourette Syndrome; 8A05.01 Chronic Motor Tic 

Disorder; 8A05.02 Chronic Phonic Tic Disorder; 6C90 Oppositional Defiant Disorder; 6C91 

Conduct-Dissocial Disorder.  

For ASD, we also included studies with a diagnosis based on the Autism Diagnostic 

Observation Schedule (ADOS), that has shown acceptable diagnostic accuracy in research 

settings29. 

 

Study selection  

 

Two authors independently screened titles and abstracts, and any conflicts were resolved 

by a third senior author. All selected articles underwent full text screening by two authors 

independently, with conflicts resolved by consultation with a third senior author. 

 

Data extraction 

 

For each retained study, we extracted the following variables: first author, year of 

publication, design (cross-sectional or longitudinal), specific disorder(s) included, diagnostic 

criteria, number and age of cases and controls, percentage of males, percentage of White 

ethnicity individuals, type of biomarker(s), most adjusted effect size or p value, and inclusion 

of any of the following, when available: sensitivity, specificity, PPV, NPV, and receiver 

operating characteristic area under the curve (ROC AUC).  

 

Study quality appraisal 

 

We rated the quality of cross-sectional studies using BIOCROSS, an appraisal tool for 

cross-sectional studies using biomarker data (no tools for longitudinal studies of biomarkers 

are available)30. The following items were selected as the most appropriate for the appraisal 

of studies of biochemical biomarkers: item 3 (3.1: “Was the sampling frame reported (study 

population source)?”; 3.2: “Was the participation rate reported (i.e., eligible persons at least 

50%)?”; 3.3: “Was sample size justification or power description provided?”); item 4 (4.1: 

“Were the study population characteristics (i.e., demographic, clinical and social) presented?”; 

4.2: “Were the exposures and potential confounders described?”; 4.3: “Were any missing 

values and strategies to deal with missing data reported?”); item 5 (5.1: “Did the authors clearly 

report statistical methods used to calculate estimates (e.g., Spearman, Pearson, linear 

regression)?”; 5.2: “Were key potential confounding variables measured and adjusted 
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statistically in reported analyses?”; 5.3: “Was the raw effect size estimate (correlation 

coefficient, beta coefficient) or measure of study precision provided (e.g., confidence intervals, 

precise p value)?”); item 8 (8.1: “Were the measurement methods described (assay methods, 

preservation and storage, detailed protocol, including specific reagents or kits used)?”; 8.2: 

“Were the reproducibility assessments performed for evaluating biomarker stability?”; 8.3: 

“Were the quantitation methods well described?”); item 9 (9.1: “Was the laboratory/place of 

measurement mentioned?”; 9.2: “Were any quality control procedures and results reported 

(e.g., reported coefficient of variation)?”; 9.3: “Were the analyses blinded for laboratory 

staff?”). We selected items 3, 4, 5, 8 and 9, with exclusion of sub-items 4.2, 8.2, 9.1 and 9.3, 

for neuroimaging, neurophysiological and neuropsychological studies. We selected items 3, 

4, 5 and 8, with exclusion of sub-item 8.3, for GWAS. 

 

Synthesis of the evidence 

 

We provided a qualitative synthesis of the included studies and of the level of 

transdiagnosticity. To assess promising biomarkers, we indicated first, when possible, the 

number and frequency of positive and negative replications (with the direction of the 

association, i.e. increased or decreased) for each biomarker assessed in at least two studies, 

with at least one positive finding in terms of significant associations. We then identified the 

biomarkers for which at least two studies reported on sensitivity, specificity, PPV, NPV and/or 

ROC AUC, and the biomarkers with a sensitivity and specificity of at least 80% replicated in 

at least two studies. 

 

 

RESULTS 

 

From an initial pool of 10,625 references, we retained 795 studies (see Figure 1, reporting 

the PRISMA 2020 flow chart31). The lists of included references and of those excluded, with 

reasons for exclusion after checking the full text, are reported in the supplementary 

information.  

We present the findings in relation to each type of candidate biomarker (now onwards, for 

simplicity, referred to as “biomarker”), based on the primary outcome of the study (for instance, 

a study assessing a neurophysiological biomarker as primary outcome but including also 

biochemical biomarkers is reported under the section “Neurophysiology”). 
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Biochemical biomarkers 

 

We included a total of 375 studies (360 cross-sectional and 15 longitudinal), 371 of which 

conducted in 58 individual countries and four in multiple countries, encompassing a total of 

26,715 cases and 41,903 controls, and investigating 1,427 biomarkers (see supplementary 

information).  

The average total BIOCROSS score (for cross-sectional studies) was 5.1 (out of 10). The 

average scores were 0.7 for item 3; 1.1 for item 4; 1.5 for item 5; 1.4 for item 8; and 0.5 for  

item 9. Therefore, the most concerning methodological issues of the included studies were 

related to the lack of reporting of sampling frame, participation rate and power calculation, as 

well as of quality procedures and blinding of the laboratory staff.  

The included studies focused on a variety of biochemical biomarkers, including 

neurotransmitters (e.g., dopamine), hormones (e.g., oxytocin), inflammatory markers (e.g., IL-

6), heavy metals (e.g., iron), antioxidants (e.g., vitamin E), and detoxifying agents (e.g., 

cytochrome P450 oxidase). We summarize below the findings for each neurodevelopmental 

disorder. 

 

ADHD 

 

We retained 55 studies (53 cross-sectional and two longitudinal), reported in 56 papers, 

from 19 countries, including a total of 4,164 participants with ADHD and 7,363 controls.  

The average total BIOCROSS score was 4.9 (out of 10). The average scores were 0.8 for 

item 3; 1.0 for item 4; 1.3 for item 5; 1.2 for item 8; and 0.4 for item 9. Therefore, in line with 

the ratings across all studies of biochemical markers, the most concerning aspects were in 

relation to the lack of reporting of sampling frame, participation rate and power calculation, as 

well as of quality procedures and blinding of the laboratory staff. 

The included studies assessed, collectively, 229 biomarkers (see supplementary 

information). Of these, 24 biomarkers were investigated in at least two studies, with at least 

one positive finding (see Table 1). Biomarkers with positive replications only, without negative 

findings, in the same direction (i.e., increased in ADHD vs. controls, or decreased in ADHD 

vs. controls) included: copper (two studies, increased in ADHD compared to neurotypical 

participants); malondialdehyde, one of the final products of polyunsaturated fatty acids 

peroxidation in the cells (two studies, increased); mean platelet volume (two studies, 

increased); and zinc (two studies, increased). 

For 28 biomarkers, one or more of the following metrics were investigated: specificity, 

sensitivity, PPV, NPV, and ROC AUC. However, only for mean platelet volume these metrics 

were available from at least two studies. In both studies, specificity and sensitivity were less 
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than 80%, and ROC AUC values were less than 0.8. Therefore, none of the biomarkers for 

which a significant association with ADHD was detected and replicated, without negative 

associations, had evidence of a specificity and sensitivity at least of 80% and ROC AUC at 

least of 0.8 (see also supplementary information). 

 

Autism spectrum disorder 

 

We included 299 studies (288 cross-sectional and 11 longitudinal), reported in 302 

papers, from 55 countries, encompassing a total of 20,583 participants with ASD and 33,450 

controls. The average total BIOCROSS score was 5.2 (out of 10). The average scores were 

0.8 for item 3; 1.0 for item 4; 1.3 for item 5; 1.3 for item 8; and 0.7 for item 9.   

The included studies evaluated, overall, 1,298 biomarkers (see supplementary 

information). Of these, 163 biomarkers were investigated in at least two studies, with at least 

one positive finding (see Table 2). Biomarkers with positive replications only, without negative 

findings, in the same direction (i.e., increased in ASD vs. controls, or decreased in ASD vs. 

controls) included: 2-aminobutyric acid (two studies, increased); 2-hydroxybutyric acid (two 

studies, increased); 8-isoprostane, a prostaglandin isomer (three studies, increased); adrenic 

acid (two studies, decreased); alanine (two studies, decreased); alpha-1-antitrypsin, an 

enzyme inhibitor that acts as a protector against enzymes of inflammatory cells (two studies, 

increased); anandamide, an endocannabinoid (two studies, decreased); arachidic acid (two 

studies, increased); aspartic acid (two studies, decreased); parabacteroides (two studies, 

increased); creatine kinase, an enzyme catalyzing the conversion of creatine (two studies, 

decreased); coproporphyrin, a product of heme synthesis (four studies, increased); cysteine 

(three studies, decreased); glutamine (four studies, increased); glutathione/oxidized 

glutathione ratio (three studies, decreased); high-density lipoprotein (two studies, decreased); 

hippuric acid (two studies, increased); high-sensitivity C-reactive protein, a marker of 

inflammation (two studies, increased); heat shock protein 70, a molecular chaperone that 

stabilizes protein substrates against denaturation (two studies, increased); interferon-γ-

inducible protein 16 (two studies, increased); kynurenic acid (two studies, decreased); lactic 

acid (two studies, increased); lead (three studies, increased); neurotensin, a 

neurotransmitter/modulator (three studies, increased); para-cresol or 4-methylphenol, a 

phenol derivative that can be converted in an antioxidant (three studies, increased); 

peroxiredoxin 1, an antioxidant (two studies, increased); phosphatidylcholine, a phospholipid 

(two studies, decreased); pregnenolone sulfate (two studies, decreased); secreted amyloid 

precursor protein alpha, neuroprotective and neurotropic protein (three studies, increased); 

succinic acid (three studies, increased); human transforming growth factor β (three studies, 
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increased); thiol, an organosulfur protecting against oxidative stress (two studies, decreased); 

and triglycerides (two studies, increased). 

Specificity, sensitivity, PPV, NPV and/or ROC AUC were assessed for 303 candidate 

biomarkers or combinations of biomarkers. When considering biomarkers reported in more 

than one study, with at least one study showing specificity of 80% or higher, we found 15 

biomarkers. Likewise, we located 15 biomarkers reported in more than one study, with at least 

one study showing specificity of 80% or higher. Additionally, 16 biomarkers reported in more 

than one study had at least one study showing ROC AUC of at least 0.8 (see Table 3). There 

were no compounds for which PPV or NPV were reported in more than one study.  

The only biomarkers showing a specificity of at least 80% in two or more studies, without 

studies where specificity was less than 80%, with the same direction (i.e., biomarker increased 

or decreased in all studies) were oxytocin (decreased, two studies) and vitamin E (decreased, 

two studies). Heat shock protein 70 (increased, two studies), interferon-gamma-induced 

protein-16 (increased, two studies), interferon-gamma (increased, two studies), and vitamin E 

(decreased, two studies) showed a sensitivity of at least 80% in two or more studies, with no 

studies where sensitivity was less than 80%, with the same direction. Of note, the two studies 

on specificity and sensitivity in relation to vitamin E derived from non-independent research 

groups. 

In relation to ROC AUC,  the following candidate biomarkers showed values of at least 

0.8 in two or more studies, without studies where ROC AUC was less than 0.8, with the same 

direction: heat shock protein 70 (increased, 2 studies), interferon-gamma (increased, two 

studies), mercury (increased, two studies), and vitamin E (decreased, three studies).  

Therefore, similarly to ADHD, none of the biomarkers for which a significant association 

with ASD was detected and replicated, without negative associations, had evidence of 

specificity and sensitivity of 80% or higher, alongside ROC AUC of 0.8 or higher. 

Of note, we also found studies exploring diagnostic classification based on models 

including a broad array of metabolites or microbiota, and four of these (all from China) provided 

a ROC AUC of at least 0.8, but none of these models was tested in additional independent 

studies. 

 

Conduct disorder  

 

We retained only five studies (three cross-sectional and two longitudinal), reported in five  

papers, three conducted in the US, one in Croatia and one in multiple countries, including a 

total of 298 participants with conduct disorder and 362 controls.  

The average total BIOCROSS score was 6.3 (out of 10). The average scores were 1.0 for 

item 3; 1.0 for item 4; 1.7 for item 5; 1.7 for item 8; and 1.0 for item 9. So, the BIOCROSS 
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scores were in general higher than those found for ADHD and ASD, even though deriving from 

a much smaller number of studies. 

Overall, 13 unique biomarkers were assessed. Cortisol was the only biomarker tested in 

more than one study (n=2), and was found significantly associated with conduct disorder in 

one study but not in the other one. No values of sensitivity and specificity were reported for 

any biomarker in two or more independent studies. 

 

Global developmental delay/Intellectual disability 

 

We included only five studies (all cross-sectional), reported in six papers, one conducted 

in China, one in France, one in South Korea, one in Iran, and one in Turkey, encompassing a 

total of 954 cases of intellectual disability and 189 controls.  

Our rating of the quality of the studies was lower compared to the other disorders, but this 

should be considered cautiously, being based on a limited number of studies. The average 

total BIOCROSS score was 4.0 (out of 10). The average scores were 0.7 for item 3; 0.7 for 

item 4; 1.3 for item 5; 1.3 for item 8; and 0.5 for item 9.  

Overall, 14 unique biomarkers were assessed. BDNF was the only biomarker tested in 

more than one study (n=2), and was found significantly associated with intellectual disability 

in one study but not in the other one. No biomarkers had values of sensitivity and specificity 

from two or more independent studies. 

 

Tic disorder/Tourette’s syndrome 

 

We found seven eligible studies (all cross-sectional), reported in seven papers, two 

conducted in China, two in the Netherlands, one in Israel, one in the US, and one in multiple 

countries, including a total of 569 cases of tic disorder/Tourette’s syndrome and 425 controls.  

The average total BIOCROSS score was 4.4 (out of 10). The average scores were 0.6 for 

item 3; 0.9 for item 4; 1.3 for item 5; 1.0 for item 8; and 0.7 for item 9. So, the most concerning 

aspects, in terms of study quality, were in relation to the lack of reporting of sampling frame, 

participation rate and power calculation.  

Overall, 50 unique biomarkers were assessed. None was tested in more than one study.  

 

Other or combined disorders 

 

We found only one study for coordination developmental disorder. Only three studies 

included cases with more than one diagnosis, i.e., two studies assessing participants with 
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ADHD plus ASD, reporting on non-overlapping biomarkers across the two studies, and one 

study including individuals with ADHD and conduct disorder/oppositional defiant disorder.  

 

Genetics 

 

We included five GWAS (see Table 4), covering ADHD, ASD, global developmental delay 

and autism, tic disorder and Tourette’s syndrome, and speech/language impairment. They 

were conducted in the UK or US or by multinational consortia, encompassing a total of 51,083 

participants with neurodevelopmental disorders and 81,918 controls.  

Twelve single nucleotide polymorphisms (SNPs) were found to be significantly associated 

with ADHD, five with ASD, one with tic disorder/Tourette’s syndrome, and none with global 

developmental delay or speech/language impairment. There was no overlap of significant 

SNPs across disorders (see Table 4).  

Despite this limited number of robustly identified genetic biomarkers, several of the 

studies estimated the total contribution of common genetic risk factors linked to each 

phenotype (i.e., the “SNP-based heritability” or SNP-h2). SNP-h2 was estimated to be 

approximately 21.6% for ADHD, 11.8% for ASD, 7.7% for global developmental delay, and 

21.0% for tic disorder/Tourette’s syndrome.  

In terms of study quality, according to the selected BIOCROSS criteria, the studies of 

ADHD, ASD and global developmental delay scored highly (total score: 7 out of 8), while those 

of tic disorder/Tourette’s syndrome and speech/language impairment had moderate scores (6 

out of 8, and 5 out of 8, respectively), indicating that the studies were largely well-conducted. 

Of note, whereas these GWAS provided an estimate of the degree of association, none 

of them assessed specificity, sensitivity, PPV, NPV or ROC AUC. 

We could not locate any GWAS study focusing on ODD or CD as diagnostic entities. 

However, there have been several GWAS related to ODD/CD which focused on a broad 

concept of “externalizing” problems (including, for example, substance use disorder) and 

consisted of primarily adult samples. The largest relevant GWAS in children32 operationalized 

“aggression” and was based on symptoms in the general population, rather than 

disorder/diagnosis.  

 

Neuroimaging 

 

We included a total of 214 studies (209 cross-sectional and 5 longitudinal), 187 of which 

conducted in 22 individual countries and 27 in multiple countries, encompassing a total of 

28,636 cases and 39,508 controls (see supplementary information).  
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Retained studies encompassed a variety of brain imaging techniques and measures. At 

the structural level, magnetic resonance imaging (MRI) morphometric measures – i.e., brain 

volume, surface area, cortical thickness (region-specific and whole-brain) – as well as 

structural connectivity (via diffusion tensor imaging, DTI) were included. At the functional level, 

different levels of functional connectivity (including effective connectivity, whole-brain 

connectivity, network-based connectivity, global/local efficiency, and low frequency 

fluctuations) were measured with task-based or resting state functional MRI. In addition, a few 

studies reported less commonly measured functional phenotypes, such as wavelet coherence 

or entropy, other measures (e.g., brain iron content in ADHD), or used imaging modalities 

other than MRI, e.g. functional near-infrared spectroscopy (fNIRS) (see also supplementary 

information).  

The average total BIOCROSS score was 4.86 (out of 8). The average scores were 0.98 

for item 3; 1.03 for item 4; 1.40 for item 5; and 1.44 for item 8. Therefore, the main concerns 

were around study population source, reporting of participation rate, and sample size 

justification. 

Four studies included two or more neurodevelopmental disorders compared to controls; 

the rest focused on individual disorders. Of note, only five studies tested the candidate 

biomarker in an external, independent sample. 

 

ADHD 

 

We included 69 studies (67 cross-sectional and 2 longitudinal), 64 conducted in 17 

countries and five in multiple countries, encompassing a total of 10,273 cases and 20,518 

controls.  

The average total BIOCROSS score was 5.14 (out of 8). The average scores were 1.00 

for item 3; 1.12 for item 4; 1.50 for item 5; and 1.56 for item 8.  

More than half of the studies (53%) reported results only as p values, which are poorly 

informative as significance depends on sample size. Reported effect sizes (d) were lower than 

1, and frequently low (around 0.2-0.4). Of note, both specificity and sensitivity were at least 

80% for four studies only. These studies were based on a semi-supervised learning algorithm 

that discovers natural groupings of brains based on the spatial patterns of variation in the 

morphology of the cerebral cortex and other brain regions, fNIRS functional connectivity, a 

support vector machine (SVM) model including prefrontal cortex activity (fNIRS) during 

interference with inhibitory control, and cortical thickness and volume features (see 

supplementary information). However, importantly, there were no other studies replicating 

these findings. Other measures such as PPV and NPV were reported only inconsistently.  
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ASD 

 

We retained 121 studies (118 cross-sectional and 3 longitudinal), 100 conducted in 14 

countries and 21 in multiple countries, including a total of 17,632 cases and 18,254 controls.  

The average total BIOCROSS score was 4.72 (out of 8). The average scores were 0.97 

for item 3; 0.99 for item 4; 1.36 for item 5; and 1.40 for item 8. 

Nearly half of the studies (47%) reported only p values. In seven studies, both specificity 

and sensitivity were higher than 80%: one assessing wavelet-based coherence in resting state 

across larger-scale functional networks; four assessing resting-state functional connectivity in 

different networks; and two evaluating different DTI parameters. In one study only, specificity 

and sensitivity were higher than 80% and ROC AUC higher than 0.8; that study used a SVM 

model including ten critical functional resting-state sub-networks (see supplementary 

information). 

 

Conduct disorder 

 

We found six eligible studies (including 197 cases and 194 controls), all cross-sectional, 

five conducted in China and one in the UK.  

The average total BIOCROSS score was 4.60 (out of 8). The average scores were 1.00 

for item 3; 1.00 for item 4; 1.16 for item 5; and 1.50 for item 8. 

Three studies reported only p values. Sensitivity and specificity were equal to or higher 

than 80% in one study only, based on a convolutional neural network (CNN) model to 

automatically extract multi-layer high dimensional features of structural MRI (see 

supplementary information). 

 

Tic disorder/Tourette’s syndrome 

 

Eight studies (196 cases and 211 controls), all cross-sectional, six conducted in China 

and two in the US, were retained.  

The average total BIOCROSS score was 4.50 (out of 8). The average scores were 1.00 

for item 3; 1.00 for item 4; 1.20 for item 5; and 1.50 for item 8. 

Four of the studies (50.0%) reported p values only. Both sensitivity and specificity were 

at least 80% in three of the included studies. The first of these studies focused on inter-

hemispheric intrinsic functional connectivity for the bilateral orbitofrontal gyrus, bilateral 

midbrain, and bilateral ventral striatum; the second on global functional network properties; 

and the third on multiscale entropy. In all these studies, ROC AUC was higher than 0.8, but 

no replication of the results was found. 
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Other disorders 

 

We found only one eligible study on developmental delay, one on dyslexia, one on 

dyslexia/learning disorders. In none of these studies, specificity and sensitivity were higher 

than 80%. 

 

Neurophysiology 

 

A total of 133 studies were retained, 121 cross-sectional, 11 longitudinal, and 1 cross-

sectional plus longitudinal, 128 conducted in a total of 24 countries and five in multiple 

countries, including a total of 7,045 cases and 6,923 controls (see supplementary information). 

The average total BIOCROSS score was 4.87 (out of 8). The average scores were 0.97 

for item 3; 1.11 for item 4; 1.32 for item 5; and 1.52 for item 8. Therefore, the most critical 

items were related to sampling frame, participation rate, and sample size justification. 

Biomarkers tested in the retained studies included electroencephalogram (EEG), 

magnetoencephalography (MEG); cardiovascular, acoustic startle reflex, oculomotor, 

actigraphy and pupillometry measures.  

 

ADHD 

 

N2 amplitude, contingent negative variation (CNV) amplitude, mismatch negativity (MMN)  

latency, gamma coherence, and activity levels had a replication rate of 100%, albeit in a small 

number of studies (four for N2 amplitude and two for the other measures) (see Table 5).  

The average total BIOCROSS score was 4.88 (out of 8). The average scores were 0.97 

for item 3; 1.12 for item 4; 1.33 for item 5; and 1.52 for item 8. 

There were no biomarkers for which sensitivity, specificity, PPV, NPV and ROC AUC have 

been tested in more than one study per biomarker (see supplementary information). 

 

ASD 

  

The only biomarker with a replication rate of 100% was acoustic eye-blink startle latency 

(see Table 6). Sensitivity, specificity, PPV, NPV or ROC AUC were not tested in more than 

one study per biomarker (see supplementary information). 

The average total BIOCROSS score was 4.87 (out of 8). The average scores were 0.97 

for item 3; 1.11 for item 4; 1.32 for item 5; and 1.51 for item 8. 
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Other disorders 

 

We could not assess replication rates of biomarkers in other disorders due to paucity of 

data. 

 

Neuropsychology 

 

We included 68 studies, 64 cross-sectional, three longitudinal, and one cross-sectional 

plus longitudinal, 64 conducted in a total of 24 countries, and four in multiple countries, 

including a total of 7,335 cases and 6,341 controls (see supplementary information). 

The average total BIOCROSS score was 5.09 (out of 8). The average scores were 1.04 

for item 3; 1.19 for item 4; 1.69 for item 5; and 1.16 for item 8. 

  

ADHD 

 

Long-term and short-term memory were characterized by replication rates of 100%, but 

across a small number of studies (two and five, respectively) (see Table 7).  

The average total BIOCROSS score was 5 (out of 8). The average scores were 0.95 for 

item 3; 1.14 for item 4; 1.67 for item 5; and 1.24 for item 8. 

In no instance, sensitivity, specificity, PPV, NPV or ROC AUC have been tested in more 

than one study per biomarker (see supplementary information). 

 

ASD 

 

Long-term and short-term memory had replication rates of 100%, but across a small 

number of studies (two and five, respectively) (see Table 8).  

The average total BIOCROSS score was 5.17 (out of 8). The average scores were 1.09 

for item 3; 1.21 for item 4; 1.74 for item 5; and 1.12 for item 8. 

We could not locate any biomarkers for which sensitivity, specificity, PPV, NPV or ROC 

AUC have been tested in more than one study per biomarker (see supplementary information). 

 

Tourette’s syndrome 

 

No replication, for any biomarkers, was found in relation to Tourette’s syndrome. 
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Are there promising biomarkers which are transdiagnostic? 

 

As we did not find any promising biomarker according to the criteria that we set, we could 

not address our additional aim, i.e., to assess to what extent promising biomarkers are 

transdiagnostic across neurodevelopmental disorders.  

However, replication rates of associations, when available, did not suggest the 

transdiagnostic nature of any candidate biomarkers, with the possible exception of long-term 

and short-term memory, that had 100% replication for ADHD and ASD, and of working 

memory, that had ~80% replication for these disorders. Similarly, there was no overlap across 

SNPs across neurodevelopmental disorders in the included GWAS.  

 

 

DISCUSSION 

 

We conducted the first systematic review of studies on candidate diagnostic biomarkers 

for neurodevelopmental disorders, including 795 studies encompassing biochemical, genetic, 

neuroimaging, neurophysiological and neuropsychological measures. 

In principle, finding valid, reliable and broadly usable biomarkers to detect or confirm the 

presence of any neurodevelopmental disorder would be highly valuable. Indeed, as these 

disorders manifest themselves early in development, an accurate and early diagnosis is crucial 

from a clinical and public health standpoint. However, despite decades of research and 

hundreds of publications, we could not find any biomarker that could be defined as promising 

based on evidence from two or more studies with specificity and sensitivity of at least 80%. 

Other important metrics to assess the validity of a biomarker, such as PPV and NPV, were 

unfrequently reported. We could not find any cost-effectiveness study.  

Findings across the different areas included in this systematic review suggest that, while 

it is unlikely for a single candidate biomarker to become promising in terms of clinical 

translation, models including multiple biomarkers, converging on the same or related biological 

pathways, might be more successful. An additional aim of this review was to assess if 

promising biomarkers are transdiagnostic across neurodevelopmental disorders. We could 

not find evidence for this across any combination of the included disorders, but this negative 

finding was likely due to the absence of promising biomarkers in individual disorders in the 

first place. 

While the body of research considered in this systematic review may seem impressive, 

the majority of included studies have simply focused on associations, reporting mainly p 

values, which are poorly informative as they are strongly affected by sample size. Whenever 

effect sizes were reported, these were generally in the low or moderate range, and certainly 
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not in the range of an effect size of d=1.66 that would be needed to lead to a sensitivity and 

specificity of 80%8. 

Even when statistically significant associations have been reported, the way candidate 

biomarkers relate to the symptoms and the pathophysiology of a given disorder is unclear. 

Moreover, a large number of biomarkers have been significantly related with a given disorder, 

but in opposite directions, with equally plausible explanations, at least theoretically. For 

instance, a significant decrease of melatonin in ASD has been interpreted as a reflection of 

the genetically determined disruption of the serotonin-N-acetylserotonin-melatonin pathway33; 

by contrast, increased levels of melatonin have been explained as a consequence of a putative 

disruption of the blood-brain barrier in ASD34. 

Moreover, the role of possible confounding effects when interpreting associations is 

crucial. Indeed, some markers may be influenced by factors such as diet, abnormal weight, 

stress, activity levels, smoking, or pharmacological treatment35. Our quality appraisal via the 

BIOCROSS tool indicated that controlling for confounding effects was inconsistent across 

studies. Importantly, the type of factors adjusted for varied substantially across studies. 

Longitudinal studies may help in gaining better insight into the possible causal role of 

candidate biomarkers. However, only a few (n=36, 4.5%) of the included studies used a 

longitudinal design. This finding is consistent with evidence in relation to candidate biomarkers 

for other mental health conditions. For instance, a systematic review of studies on peripheral 

biomarkers for major psychiatric disorders found that only 34% of the included studies used a 

longitudinal design12.  

Beyond associations, a minority of studies focused on metrics that are crucial in order to 

assess to which extent a biomarker is promising, mainly including specificity, sensitivity or 

ROC AUC. Other important metrics, such as PPV or NPV values, were only rarely assessed. 

Of note, we could not find any biomarker with evidence from two or more studies with 

acceptable specificity and sensitivity, or evidence of acceptable PPV, NPV and ROC AUC. 

Beyond the methodological issues related to small sample size, poor replicability, lack of 

standardization, and confounding factors, the main issue that seems to hamper the successful 

discovery of biomarkers is the very nature of the current psychiatric diagnoses, including the 

diagnosis of neurodevelopmental disorders, which are based on heterogeneous clusters of 

symptoms rather than underlying neurobiology. While different conceptualizations exist36-41, 

clinical characterizations and delineations of psychiatric diagnoses remain problematic. 

Stratification of patients based on more homogeneous characteristics may move the field 

forward leading to more valid biomarkers. As Kapur et al42 noted, the field of breast cancer 

faced a similar issue until bumps could be classified with histological tools. The Research 

Domain Criteria framework43, aimed at establishing underpinning dimensions from the micro 

(i.e., genetic) to the macro (i.e., self-reported symptoms) levels, thus appears as a remarkable 
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opportunity for stratification of patients with neurodevelopmental disorders and, hence, the 

discovery of valid diagnostic biomarkers.   

Arguably, given the complexity and heterogeneity of neurodevelopmental disorders in 

terms of pathophysiology, it is highly unlikely that biomarker applications based on a single 

parameter will be meaningful in clinical practice44-47. Indeed, we found that models based on 

multiple parameters were in general associated with higher specificity, sensitivity and ROC 

AUC, although there was no replication of such models yet. In this regard, the scientific 

community focusing on neurodevelopmental disorders should be inspired by initiatives in other 

fields integrating several modalities in the same study, such as the Canadian Biomarker 

Integration Network on Depression (CAN-BIND), connecting clinical information with 

neuroimaging (e.g., brain structure), molecular (e.g., genetic, hormonal) and 

electrophysiological (e.g., response to transcranial magnetic stimulation) data48. 

However, even once biomarkers with good specificity, sensitivity and other metrics are 

found, they will need to be first validated in external, independent samples and then, 

importantly, also assessed in terms of feasibility and cost-effectiveness in daily clinical 

practice. Strikingly, we found only a limited number of studies with external validation, mainly 

limited to neuroimaging studies, and, in an additional search, no replication of studies testing 

the cost-effectiveness of any biomarker for neurodevelopmental disorders. Until this path is 

completed, any suggestion about the clinical relevance of candidate biomarkers would be 

misleading. Indeed, there have been reports of court cases where neuroimaging findings and 

genetic polymorphisms have been used to argue that the accused had a mitigating psychiatric 

disorder35. Our findings do not provide any evidence to support a similar approach for 

neurodevelopmental disorders35. 

While it is highly unlikely that diagnostic biomarkers will replace clinical assessment, they 

may eventually support clinical decision making. For instance, preliminary evidence from a 

randomized, parallel, single-blind, controlled trial showed that the diagnosis of ADHD with the 

support of a computerized test of attention and activity (QbTest), compared to the standard 

clinical diagnosis, led to an appointment length reduced by 15% (time ratio: 0.85, 95% CI: 

0.77-0.93) and an increased clinicians' confidence in their diagnostic decisions (odds ratio: 

1.77, 95% CI: 1.09-2.89)49. However, since attention is at the core of the clinical symptoms 

defining the diagnosis, it is debatable to what degree the measurement of attention is a 

candidate biomarker of ADHD or a standardized symptom assessment. 

The possible future clinical implementation of diagnostic biomarkers will also need to 

consider important ethical aspects. Patients, lay people and some professionals are 

concerned that biomarkers may increase mental health stigma and discrimination. Indeed, as 

a reaction to the Human Genome project, fuelled by historical concerns about eugenics, 

national legislation has been developed in some countries to prevent genomic discrimination50. 
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We argue that educational campaigns will be crucial to address issues around stigma while 

supporting the discovery of biomarkers.   

The lack of evidence for a transdiagnostic nature of the biomarkers that have been 

explored in neurodevelopmental disorders so far is at odds with the conclusions of another 

systematic review12, supporting a transdiagnostic nature of peripheral biomarkers across 

several mental health conditions (major depressive disorder, bipolar disorder and 

schizophrenia), as well as evidence from neurophysiological studies in children and 

adolescents13. However, the conclusions of that systematic review were based on the type of 

key words retrieved from relevant papers as well as on the variation (increase or decrease) of 

the biomarkers across disorders. By contrast, we focused on replication patterns, in line with 

the Report of the APA Work Group on Neuroimaging Markers of Psychiatric Disorders 

recommendations9. 

Moreover, the lack of evidence of transdiagnosticity from GWAS should be considered 

with caution, given the small sample size for neurodevelopmental disorders (particularly 

learning disorders) and meta-analytic evidence indicating large genetic correlations between 

most neurodevelopmental disorders51. Indeed, cross-disorder genetic correlation estimates 

clearly show that there are substantial shared common genetic risks (e.g., across ADHD and 

ASD) and therefore future studies of specific SNPs that are implicated in multiple disorders 

will need to be identified through multi-disorder analyses52. Similarly, previous large scale 

studies and meta-analyses of neuroimaging, neurophysiological and neuropsychological 

impairments have highlighted areas of overlap, particularly between ADHD and ASD53-56. 

It is worth noting that the vast majority of studies have focused on cases of 

one neurodevelopmental disorder in comparison to neurotypical or population controls – a 

design that can determine whether a measure may be a good diagnostic biomarker. Should 

promising diagnostic biomarkers emerge from this literature, their potential clinical utility may 

be to aid diagnostic decisions when it is unclear whether a child meets criteria for a given 

disorder. However, a much more likely scenario in clinical practice is the need for objective 

tools that can augment the valid differential diagnosis between different neurodevelopmental 

disorders or to determine whether a child should receive a diagnosis of one or more comorbid 

neurodevelopmental disorders. Yet, a low number of studies have conducted comparisons 

across different neurodevelopmental disorders. 

 

Biochemical biomarkers  

 

Biochemical biomarkers contributed the largest pool of studies included in the present 

systematic review. This fact may not be surprising, as, compared to other modalities (e.g., 

brain imaging), it is arguably less challenging, from a logistic and financial standpoint, to 
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conduct studies on biochemical biomarkers. However, despite a plethora of studies in the field, 

replications are rare, and at times coming from the same research group. 

In addition to the general issues that we have discussed above, there are issues, but also 

opportunities, that are specific to biochemical biomarkers. Biochemical substances analyzed 

in the studies retained in the present review were generally collected from blood, plasma, 

serum or urine samples. Collection from cerebrospinal fluid (CSF) is considered to be of 

particular interest, due to its proximity to the brain. However, this collection is very complex, 

due to the invasive procedure. Furthermore, CSF contains far less proteins than plasma, 

contributing to a reduction of chances to identify proteomic biomarkers2. 

An alternative approach would be the use of post-mortem brain tissues, which would 

boost the translational links between animal models of neurodevelopmental disorders and 

studies in living humans, although it should be considered that such studies are not informative 

on brain activity57. Overall, the use of post-mortem tissues for neurodevelopmental disorders 

is still in its infancy, and mainly limited to ASD. A recent systematic review58 focusing on ASD 

and related disorders identified only three post-mortem studies assessing proteins and 

metabolites, without replicated findings58. Efforts in this field, such as the post-mortem brain 

tissue Autism BrainNet collection from the Simons Foundation59, are therefore laudable and 

mirror a trend for other psychiatric disorders, such as the setting-up of the Douglas-Bell 

Canada Brain Bank60, or the Netherlands Brain Bank for Psychiatry61. 

Another aspect relates to the type of biochemical biomarker. While a broad range of 

substances have been investigated, some in the field argue that metabolites (“metabolomics”) 

should be particularly promising as, differently from genomics, they capture the dynamic 

nature of a disease and, in contrast to proteins (“proteomics”), they provide information on the 

final product of complex interactions between proteins, signalling cascades and cellular 

environments2. However, there is usually a high degree of heterogeneity in terms of metabolite 

panels across studies.  

Finally, the procedure to collect data is also highly relevant. Factors including time of day 

or length of time since last meal are known to impact the levels of certain biomarkers (e.g., 

cytokines, gene expression, or cortisol)57. Therefore, future studies should endeavour to follow 

standardized procedures, both within and across studies.  

 

Genetic biomarkers 

 

Compared to GWAS of other psychiatric disorders in adults (e.g., major depressive 

disorder with more than 135,000 cases62, or schizophrenia with more than 76,000 cases63), 

the five retained GWAS of child neurodevelopmental disorders are relatively small and 

underpowered to detect robustly associated common genetic risk factors related to these 
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disorders. However, the results of the available GWAS suggest that these disorders are highly 

polygenic, with thousands of common genetic variants that collectively contribute to an 

increased disorder risk. 

It should be noted that GWAS of child disorders often include adults as well, and further 

work is needed to understand the degree to which the same genetic risk factors are implicated 

in childhood/remitting vs. persistent forms of disorder. This type of research has already been 

undertaken for some neurodevelopmental disorders, for instance ADHD64.  

Furthermore, for many child neurodevelopmental phenotypes, the largest available 

genetic analyses have focused on continuously distributed symptoms/traits in general 

population cohorts of children (e.g., the Avon Longitudinal Study of Parents and Children65), 

which only include a small number of diagnosed “cases”. These studies were not included in 

this review, due to being beyond its scope, but it is plausible that biological insights which are 

gained from GWAS of traits/symptoms may also be relevant to diagnosed disorders, due to a 

large degree of shared genetic risks across disorders and traits for many neurodevelopmental 

conditions66. It should be also considered that, in addition to GWAS, studies have begun to 

uncover rare genetic variants, such as copy number variants or protein truncating mutations, 

especially in ASD67,68, which should be assessed as possible diagnostic biomarkers. 

Overall, although genetic discovery still has a long way to go to be potentially informative 

for neurodevelopmental disorders in children, existing GWAS can already be applied via 

polygenic risk score methods to gain insights into phenotypic heterogeneity, and thus inform 

research on diagnostic biomarkers. 

 

Neuroimaging biomarkers   

 

From a methodological standpoint, we highlight three important aspects that have 

hampered biomarker discovery and that are particularly applicable to the neuroimaging field. 

First, it has been noted that this field has mainly been in a mechanistic discovery phase, 

whereby the main focus has been on detecting alterations in brain imaging measures rather 

than on searching promising biomarkers10. Some in the field have suggested that although, 

ideally, biomarkers would be based on neurobiologically and mechanistically interpretable 

findings, this might not always be necessary, as long as biomarkers are rigorously validated. 

In a parallel with drug development, serendipitously discovered medications with proven 

clinical effectiveness were incorporated into clinical practice before their biological 

mechanisms were fully elucidated10. 

Second, brain development is significantly affecting case-control comparisons, and 

differences in developmental stage could account for greater heterogeneity during childhood 

and adolescence. Even if biomarkers are found, the lack of reference models of brain 
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development renders the interpretation of certain patterns as a maturational delay or 

acceleration in neurodevelopmental disorders very difficult. In this context, machine learning 

approaches have just recently embraced advances that allow the characterization of 

normative trajectories and parsing of the heterogeneity at the individual level69. Notably, these 

individual-level statistics have revealed a higher predictive power of functionality when 

compared to unmodelled raw data70. Likewise, in line with the complexity of processes and 

mechanisms underpinning most psychiatric disorders, advanced modelling techniques71 allow 

for the integration of multimodal, multivariate imaging features in neurodevelopmental 

disorders, which hopefully will advance biomarker discovery.  

Third, neuroimaging studies included in this review, and in general across neuroimaging 

literature, provided effect sizes as Cohen’s d. However, this metric may not be interpretable if 

derived out of non-normal distributions, as is often encountered in neuroimaging8. 

In terms of translation/implementation in clinical practice, it is often reported that  

neuroimaging biomarkers present the disadvantage of higher costs in relation to other 

modalities (e.g., EEG). However, it should be noted that costs may decrease over time, and 

the focus should be on cost-effectiveness, rather than cost per se. It would be worthwhile to  

assess to what extent neuroimaging biomarkers could avoid additional expenses, related to 

delayed or wrong diagnosis, to the health care system.  

 

Neurophysiological and neuropsychological biomarkers 

 

Several neurophysiological and neuropsychological measures have only been 

investigated in a small number of studies, and mainly in children with ADHD or ASD. Findings 

for these modalities are highly mixed and suggest very few promising biomarkers. With the 

exception of markers of memory performance (decreased in both ADHD and ASD), highest 

replication rates were generally evident for measures that have been investigated to a lesser 

extent. 

Findings appeared more consistent for neuropsychological than for neurophysiological 

biomarkers. This is likely because the ceiling/floor effects of neuropsychological measures 

mean that impaired profiles for a given measure are more likely to emerge consistently in the 

same direction (e.g., decreased working memory accuracy in children with ADHD)72. In 

contrast, atypical profiles may represent either increases or decreases relative to neurotypical 

controls for most neurophysiological measures (e.g., increased or decreased EEG 

connectivity or power). 

Of note, previous studies indicate that neurophysiological profiles are highly 

heterogeneous in children with neurodevelopmental disorders, particularly with ADHD73 and 

ASD74, meaning that the lack of replication on these measures may not be solely attributable 
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to methodological limitations of original studies (e.g., unrepresentative and underpowered 

samples). This is demonstrated by studies identifying data-driven subgroups of patients 

characterized by different EEG profiles, which appear associated with various clinical 

characteristics75 and different rates of treatment response76,77. 

Another important consideration to make for this type of measures is that, similar to the 

neuroimaging literature, most of the research on neurophysiological and neuropsychological 

markers has focused on identifying possible mechanisms implicated in neurodevelopmental 

disorders (mechanistic discovery phase), rather than on developing biomarkers. Our search 

explicitly focused on potential biomarkers (or similar terms), and thus did not retrieve studies 

that investigated relevant measures, but without identifying them with these terms. The limited 

focus on biomarker development from this literature is also reflected in the very limited number 

of studies reporting diagnostic metrics (e.g., ROC AUC, sensitivity, specificity) required for 

establishing whether potential case-control differences at the group level can point to viable 

biomarkers. Future studies combing data-driven subgrouping techniques to parse 

heterogeneity with formal tests of biomarker properties may be particularly promising for 

identifying candidate biomarkers from neurophysiological and neuropsychological 

assessments.    

 

Limitations 

 

The findings of this systematic review should be considered in the light of some limitations. 

First, we used the term “biomarker” or equivalent terms (marker, diagnostic test, 

endophenotype) to retrieve studies in which the authors themselves had labeled their 

measure(s) as a “(bio)marker”, but we could not search for all possible (bio)markers 

individually, which would have not been feasible. Other systematic reviewse.g.,12 on biomarkers 

have used the same strategy. This limitation is particularly relevant for neuroimaging, 

neurophysiological and neuropsychological studies, of which only a portion used the term 

“biomarker” or equivalents in the article. 

A meta-analytic synthesis was beyond the scope of this review. However, given the 

generally limited number of studies for each specific biomarker, it would have not been 

possible to explore sources of heterogeneity in relation to meta-analytic estimates. Therefore, 

our approach in terms of a narrative presentation of the data is preferable and appropriate for 

the current stage of the field. Moreover, we could not locate any specific tool for the quality 

appraisal of longitudinal studies. Rather than adapting the current BIOCROSS for cross-

sectional studies, we took a more conservative and cautious approach and we did not rate the 

quality of longitudinal studies; however, they were only 4.5% of the total number of studies. 
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Even though we were careful in determining the number of positive and negative 

replications for each biomarker, it is possible that some studies selectively reported only 

positive findings, thus biasing our estimates. Furthermore, while we endeavoured to count 

participants from the same sample only once, the total numbers of participants reported in this 

systematic review are approximate, because some research groups reported results with 

partially overlapping samples. Finally, we focused on child-related biomarkers, but we did not 

include environmental biomarkers, or maternal biomarkers during pregnancy, which were 

beyond the scope of this work and would require an additional, specific systematic review. 

 

 

CONCLUSIONS 

 

The present work is the most comprehensive systematic review of candidate diagnostic 

biomarkers for neurodevelopmental disorders in children and adolescents, and should guide 

future research in the field. Results point to the need for well-powered studies, replication, 

standardization of the procedures, use of multimodal approaches in the same study, focus on 

metrics that are relevant for the validity of a biomarker – as opposed to assessing and reporting 

mere associations – and an increased focus on disorders less well investigated, such as tic 

disorder/Tourette’s syndrome, intellectual disability, learning and language disorders, as well 

as a design comparing two or more neurodevelopmental disorders. 

It is hoped that in the future the biomarker research in youth with neurodevelopmental 

disorders will benefit from larger samples, consistent methods, concerted efforts focusing on 

replication, building on recent consortia and other promising ongoing efforts78,79. This research 

should follow the lead of biomarker research in adults with severe mental disorders80,81 and of 

other areas of medicine82,83, that can inform appropriate assessment techniques. Future 

research should focus on machine learning and other advanced data analytic techniques as 

well as multivariable and multi-level biomarker approaches that may arguably be best suited 

to match the complexities of mental disorders. 
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Figure 1   PRISMA 2020 flow diagram showing selection of studies for inclusion 
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Table 1  Candidate biochemical biomarkers investigated in at least two studies, with at least one 
positive finding, for attention-deficit/hyperactivity disorder (ADHD) 

 

Biomarker 

Number of 

studies with  

significant 

finding 

Number of studies 

with 

non-significant finding 

Direction 

Frequency of 

replication 

(%) 

Copper (urine, hair) 2 0 Increased 100 

Malondialdehyde (plasma) 2 0 Increased 100 

Mean platelet volume (blood) 3 0 Increased 100 

Zinc (urine, hair) 2 0 Decreased 100 

Cortisol (saliva, serum) 2 1 Decreased 67 

Neutrophils/lymphocytes ratio 

(blood) 
2 1 Increased 67 

Oxytocin (serum) 2 1 Decreased 67 

Platelet/lymphocyte ratio (blood) 2 1 Increased 67 

Folate (blood) 1 1 Decreased 50 

Gamma-aminobutyric acid (serum) 1 1 Increased 50 

Glial cell line-derived  neurotrophic 

factor (plasma) 
1 1 Increased 50 

Glutamate (serum) 1 1 Increased 50 

Interleukin-6 (plasma) 1 1 Increased 50 

Lymphocytes (blood) 1 1 Decreased 50 

Melatonin (saliva) 1 1 Decreased 50 

Monocyte/lymphocyte ratio (blood) 1 1 Increased 50 

Red blood cell distribution width 

(blood) 
1 1 Increased 50 

Soluble vascular cell adhesion 

molecule-1 (plasma) 
1 1 Increased 50 

Tumor necrosis factor-alpha 

(plasma) 
1 1 Decreased 50 

Vitamin B12 (serum) 1 1 Decreased 50 

Brain-derived neurotrophic factor 

(plasma) 
2 3 Decreased 40 

Neutrophil (blood) 2 1 
One increased, one 

decreased 
33 

8-hydroxy-2-deoxyguanosine 

(serum) 
1 2 Increased 33 

Ferritin (serum) 1 2 Decreased 33 
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Table 2  Candidate biochemical biomarkers investigated in at least two studies, with at least one 
positive finding and more than 50% frequency of replication, for autism spectrum disorder (ASD) 

 

Biomarker 

Number 

of studies 

with  

significant 

finding 

Number 

of studies 

with non-

significant 

finding 

Direction 
Frequency of 

replication (%) 

2-aminobutyric acid (urine, plasma) 2 0 Increased 100 

2-hydroxybutyric acid (urine) 2 0 Increased 100 

8-isoprostane (urine, plasma) 3 0 Increased 100 

Adrenic acid (plasma) 2 0 Decreased 100 

Alanine (urine, serum) 2 0 Decreased 100 

Alpha-1-antitrypsin (plasma) 2 0 Increased 100 

Anandamide (serum, plasma) 2 0 Decreased 100 

Arachidic acid (serum, plasma) 2 0 Increased 100 

Aspartic acid (urine, plasma) 2 0 Decreased 100 

Parabacteroides (gut microbiota) 2 0 Increased 100 

Creatine kinase (serum, urine) 2 0 Increased 100 

Coproporphyrin (urine) 4 0 Increased 100 

Cysteine (serum, plasma, urine) 3 0 Decreased 100 

Glutamine (blood, serum) 4 0 Decreased 100 

Glutathione/oxidized glutathione ratio 

(serum) 
3 0 Decreased 100 

High-density lipoprotein (serum) 2 0 Decreased 100 

Hippuric acid (urine) 2 0 Increased 100 

High-sensitivity C-reactive protein 

(serum) 
2 0 Increased 100 

Heat shock protein 70 (serum, plasma) 2 0 Increased 100 

Interferon-gamma inducible protein 16 

(serum) 
2 0 Increased 100 

Kynurenic acid (serum, urine) 2 0 Decreased 100 

Lactic acid (urine) 2 0 Increased 100 

Lead (urine, hair, red blood cells) 3 0 Increased 100 

Neurotensin (serum) 3 0 Increased 100 

Para-cresol (urine) 3 0 Increased 100 

Peroxiredoxin 1 (serum, plasma) 2 0 Increased 100 

Phosphatidylcholine (serum) 2 0 Decreased 100 

Pregnenolone sulfate (plasma) 2 0 Decreased 100 

Secreted amyloid precursor protein alpha 

(plasma) 
3 0 Increased 100 

Succinic acid (urine, plasma) 3 0 Increased 100 

Transforming growth factor beta (serum, 

blood) 
3 0 Increased 100 

Thiol (serum, urine) 2 0 Decreased 100 

Triglycerides (plasma) 2 0 Increased 100 

Gamma-aminobutyric acid (blood, 

plasma, serum) 
7 0 Six increased, one decreased 85 

Melatonin (serum, plasma, urine) 5 0 
One increased, four 

decreased 
80 

Dopamine (plasma, blood) 4 0 
Three increased, one 

decreased 
75 
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Glial fibrillary acidic protein (serum) 3 1 Increased 75 

Glutathione (serum, plasma) 7 1 One increased, six decreased 75 

Potassium (serum) 4 0 
One increased, three 

decreased 
75 

Leucine (serum) 3 0 
Two increased, one 

decreased 
67 

Sodium (serum, plasma) 3 0 
Two increased, one 

decreased 
67 

Antioxidant capacity (urine) 3 0 
Two decreased, one 

increased 
67 

Arginine vasopressin (cerebrospinal 

fluid) 
2 1 Decreased 67 

Catalase (urine, plasma) 2 1 Increased 67 

Citric acid (urine, plasma) 3 0 
Two  increased, one 

decreased 
67 

Citrulline (blood, urine) 2 1 Increased 67 

Docosahexaeonic acid/arachidonic acid 

(plasma) 
2 1 Increased 67 

Epidermal growth factor (plasma) 2 1 Decreased 67 

Epinephrine (plasma, blood, gut 

metabolites) 
3 0 

Two  increased, one 

decreased 
67 

Glutamate (serum, blood) 2 1 Increased 67 

Hexanol-lysine (urine) 2 1 Increased 67 

Hypoxanthine (urine) 2 1 Increased 67 

Interleukin-17-A (plasma, serum) 2 1 Increased 67 

Indole-3-acetic acid (urine) 2 1 Increased 67 

Oxalic acid (urine) 2 1 Increased 67 

Oxidized glutathione (plasma) 2 1 Increased 67 

Pentacarboxyporphyrin (urine) 2 1 Increased 67 

Phosphoric acid (urine) 2 1 Decreased 67 

S100 calcium-binding protein B (serum, 

plasma) 
4 2 Increased 67 

Tumor necrosis factor (saliva, serum) 2 1 Increased 67 

Thyroid stimulating hormone (serum) 2 1 Decreased 67 

Uric acid (serum, urine) 3 0 
Two increased, one 

decreased 
67 

Vitamin E (plasma) 2 1 Decreased 67 

Glutathione S-transferase (serum, 

plasma) 
3 0 

One increased, two 

decreased 
67 

Brain-derived neurotrophic factor (serum, 

plasma, blood) 
9 1 

Six increased, three 

decreased 
67 

Cortisol (saliva, plasma, gut metabolites) 3 2 Increased 60 

Eicosapentaenoic acid (serum) 3 2 Increased 60 

Ferritin (serum) 3 2 Decreased 60 

Homocysteine (serum, urine, plasma) 9 1 
Six increased, three 

decreased 
60 

Interleukin-8 (serum, plasma) 6 4 Increased 60 

Creatinine (urine) 4 3 Increased 57 

Mercury (blood cells, serum, urine, hair) 4 3 Increased 57 

Interleukin-1-beta (plasma) 7 4 Six increased, one decreased 54 
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Table 3  Specificity and sensitivity of at least 80% and receiver operating characteristic area under the 
curve (ROC AUC) of at least 0.8 in relation to diagnostic biomarkers for autism spectrum disorder (ASD) 
investigated in at least two studies, with at least one positive finding 

 

Biomarker 

Number of 

studies 

with 

metrics 

above 

threshold 

Number 

of studies 

with 

metrics 

below   

threshold 

Direction of the 

association in studies with 

metrics above threshold 

Frequency 

of 

replication 

(%) 

 

Specificity  ≥ 80%    

Oxytocin (serum, plasma) 2 0 Decreased 100 

Vitamin E (plasma) 2 0 Decreased 100 

Gamma-aminobutyric acid 

(plasma) 
4 0 

Three increased, one 

decreased 
75 

Brain-derived neurotrophic factor 

(serum) 
2 1 Increased 67 

Tumor necrosis factor-alpha 

(plasma) 
3 0 

Two decreased, one 

increased 
67 

Catalase (blood) 1 1 Increased 50 

Glutamate (plasma) 1 1 Increased 50 

Homocysteine (serum, plasma) 2 0 
One increased, one 

decreased 
50 

Heat shock protein 70 (plasma) 1 1 Increased 50 

Interferon-gamma (plasma) 1 1 Increased 50 

Methionine (plasma) 1 1 Increased 50 

Potassium (serum) 1 1 Increased 50 

Interleukin-6 (plasma) 3 1 
Two decreased, one 

increased 
50 

Glutathione S-transferase (plasma) 1 2 Decreased 33 

Serotonin (plasma) 2 2 
One increased, one 

decreased 
25 

 

Sensitivity  ≥ 80%    

Heat shock protein 70 (plasma) 2 0 Increased 100 

Interferon-gamma inducible 

protein 16 (plasma) 
2 0 Increased 100 

Interferon-gamma (plasma) 2 0 Increased 100 

Vitamin E (plasma) 2 0 Decreased 100 

Sodium (plasma) 1 0 Increased 100 

Gamma-aminobutyric acid 

(plasma) 
4 0 

Three increased, one 

decreased 
75 

Catalase (blood) 2 0 
One increased, one 

decreased 
50 

Glutamate (plasma) 1 1 Increased 50 

Potassium (serum) 1 1 Increased 50 

Oxytocin (serum) 1 1 Decreased 50 

Brain-derived neurotrophic factor 

(serum) 
1 2 Increased 33 

Glutathione S-transferase (plasma) 1 2 Decreased 33 

Tumor necrosis factor-alpha 

(plasma) 
1 2 Increased 33 

Interleukin-6 (plasma) 3 4 
Two decreased, one 

increased 
28.5 
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Serotonin (plasma) 1 3 Decreased 25 

 

ROC AUC  ≥ 0.8   
Heat shock protein 70 (plasma) 2 0 Increased 100 

Interferon-gamma (plasma) 2 0 Increased 100 

Mercury (serum, plasma) 2 0 Increased 100 

Vitamin E (plasma) 3 0 Decreased 100 

Gamma-aminobutyric acid 

(plasma) 
4 0 

Three increased, one 

decreased 
75 

Glutathione S-transferase (plasma) 3 0 
Two decreased, one 

increased 
67 

Interferon-gamma inducible 

protein 16 (plasma) 
2 1 Increased 67 

Potassium (serum) 3 0 
Two decreased, one 

increased 
67 

Tumor necrosis factor-alpha 

(plasma) 
3 0 

Two decreased, one 

increased 
67 

Brain-derived neurotrophic factor 

(serum) 
1 1 Increased 50 

Catalase (blood) 1 1 Increased 50 

Glutamate (plasma) 1 1 Increased 50 

Interleukin-6 (plasma) 4 2 
Two increased, two 

decreased 
33 

Melatonin (serum) 1 2 Decreased 33 

Oxytocin (serum, plasma) 2 1 Decreased 33 

Serotonin (plasma, blood) 2 3 
One decreased, one 

increased 
20 
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Table 4  Characteristics of genome wide association studies (GWAS) of diagnostic biomarkers in neurodevelopmental disorders 

Study Country Design Disorder/s Diagnosis N probands N controls Biomarker(s) 

Most adjusted 

effect size or p 

value 

Demontis et al52  Multiple Cross-

sectional 

ADHD Various 

(DSM/ICD) 

20,183 35,191 Global SNP-h2 

rs11420276 

rs1222063 

rs9677504 

rs4858241 

rs28411770 

rs4916723 

rs5886709 

rs74760947 

rs11591402 

rs1427829 

rs281324 

rs212178 

SNP-h2 = 

0.216±0.014 

 

All SNPs: 

p<5x10-8,  

OR range = 

0.835-0.928 and 

1.079-1.124 

Grove et al84 Multiple Cross-

sectional 

ASD Various 

(DSM/ICD) 

18,381 27,969 Global SNP-h2  

rs910805 

rs10099100 

rs201910565 

rs71190156 

rs111931861 

SNP-h2 = 

0.118±0.010 

All SNPs: 

p<5x10-8 

Niemi et al85 UK and 

Ireland 

Cross-

sectional 

Global 

developmental 

delay and 

autism 

Various 6,987 9,270 Global SNP-h2 

No robust 

genome-wide 

significant 

SNPs 

SNP-h2 = 

0.077±0.021 
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Yu et al86 Multiple Cross-

sectional 

Tic disorder 

and Tourette’s 

syndrome 

Various 4,819 9,488 Global SNP-h2 

rs2504235 

SNP-h2 = 

0.21±0.024 

OR=1.16, 

p=2.1×10−8 

 

Nudel et al87 UK Cross-

sectional 

Speech/ 

language 

impairment 

Various 278 Not 

applicable 

(family 

based 

study) 

No robust 

genome-wide 

significant 

SNPs 

 

 

ADHD – attention-deficit/hyperactivity disorder, ASD – autism spectrum disorder, SNP-h2 – single nucleotide polymorphism-based heritability 
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Table 5  Candidate neurophysiological biomarkers investigated in at least two studies, with at least 
one positive finding, in relation to attention-deficit/hyperactivity disorder (ADHD) 
 

Biomarker 

Number of 

significant 

effects 

Number 

of non-

significant 

effects 

Direction 

Rate of 

replication 

(%) 

 

MEG/EEG measures     

N2 amplitude 4 0 Four increased  100 

Contingent negative variation 

(CNV) amplitude 
2 0 Two increased  100 

Mismatch negativity (MMN)  

latency 
2 0 Two increased 100 

Gamma coherence 2 0 Two decreased 100 

P3 amplitude 6 3 Six decreased 67 

Mismatch negativity (MMN)  

amplitude 
2 1 Two increased  67 

Alpha clustering coefficient 2 1 Two decreased 67 

Alpha path length 2 1 Two decreased 66 

Delta power 10 2 
Six increased, four 

decreased 
50 

Alpha coherence 2 0 
One increased, one 

decreased 
50 

Theta/beta ratio 5 7 Five increased 42 

Alpha power 13 6 
Five increased, eight 

decreased 
42 

Theta power 5 9 Five increased 36 

P3 latency 1 2 One increased 33 

Gamma power 2 4 Two decreased 33 

Alpha peak frequency 1 2 One decreased 33 

Alpha asymmetry 2 4 Two increased 33 

Theta coherence 
3 0 

One increased, two 

decreased 
33 

Beta power 9 11 
Four increased, five 

decreased 
25 

 

Actigraphy 
    

Activity level 2 0 Increased 100 

 

Oculomotor measures and 

visual attention 

    

Exploration of social 

information 

1 2 One increased 33 

Visual attention orienting 3 5 Two  increased, one 

decreased 

25 

 

Pupillometry     

Pupil diameter changes 1 1 One decreased 50 

MEG – magnetoencephalography, EEG – electroencephalography 
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Table 6  Candidate neurophysiological biomarkers investigated in at least two studies, with at least one 
positive finding, in relation to autism spectrum disorder (ASD) 
 

Biomarker 

Number of 

significant 

effects 

Number of 

non-

significant 

effects 

Direction 

Rate of 

replication 

(%) 

MEG/EEG measures 
    

P3 amplitude 3 1 Three increased 75 

Alpha power 5 3 Five decreased 62.5 

N1 amplitude 5 1 
Three increased, two 

decreased 
50 

N170 amplitude 1 1 One decreased 50 

N2 amplitude 2 2 Two increased  50 

Mismatch negativity (MMN) 

amplitude 
4 3 

Three increased, one 

decreased 
43 

Gamma power 22 11 
Thirteen increased, 

nine decreased 
39 

P1 amplitude 1 2 One increased 33 

P2 amplitude 1 2 One decreased 33 

Theta power 1 2 One decreased 33 

Delta power 1 3 One decreased 25 

Beta power 1 10 One decreased 9 

Cardiovascular measures     

Heart rate 3 0 
One increased, two 

decreased 
67 

Heart rate variability - high 

frequency 
3 0 

One increased, two 

decreased 
67 

Acoustic startle reflex     

Acoustic eye-blink startle 

latency 
3 0 Three increased 100 

Acoustic eye-blink startle 

magnitude 10 5 Ten increased 66 

Acoustic eye-blink startle 

habituation 
1 8 One decreased 11 

Oculomotor measures and 

visual attention 
    

Exploration of visual stimuli 4 0 
One increased, three 

decreased 
75 

Visual attention - biological 

motion 
4 1 

One increased, three 

decreased 
60 

Perseveration on visual stimuli 8 4 
Six increased, two 

decreased 
50 



 
 

44 
 

Visual attention - social 22 33 Eight increased, 19 

decreased 

34 

Visual attention - non-social 11 10 Five increased, six 

decreased 

28 

Pupillometry     

Pupil light reflex - dilation 3 1 Two slower 75 

Pupil light reflex - constriction 7 3 
Six slower, one 

faster 
60 

Pupil diameter 4 4 
Two increased, two 

decreased 
25 

 

MEG – magnetoencephalography, EEG – electroencephalography 
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Table 7  Candidate neuropsychological biomarkers investigated in at least two studies, with at least 
one positive finding, in relation to attention-deficit/hyperactivity disorder (ADHD) 

 

Biomarker 

Number of 

significant 

effects 

Number of 

non-significant 

effects 

Direction 

Rate of 

replication 

(%) 

Long-term memory 2 0 Two decreased 100 

Short-term memory 5 0 Five decreased 100 

IQ 6 1 Six decreased 86 

Other task accuracy measures 13 2 Thirteen decreased 86 

Working memory 20 4 Twenty decreased 83 

Sustained attention omission 

errors 
8 2 Eight increased 80 

Reaction time variability 17 5 
Seventeen 

increased 
77 

Ex-Gaussian sigma 3 1 Three increased 75 

Response inhibition 

commission errors 
8 5 Eight increased 62 

Interference accuracy (e.g., 

Stroop test) 
5 3 Five decreased 62 

Mean reaction time 11 7 Eleven increased 61 

Ex-Gaussian tau 3 2 Three increased 60 

Delay aversion 3 2 Three increased 60 

Timing task variability 2 2 Two increased 50 

Face/emotion recognition 

accuracy 
1 1 One decreased 50 

Face/emotion recognition 

speed 
1 1 One decreased 50 

Set shifting accuracy 3 5 Three decreased 37.5 

Other memory measures 3 7 Three decreased 30 

Reaction time frequency 

measures 
4 8 

Three increased, 

one decreased 
25 

Wisconsin Card Sorting Test 

accuracy 
1 3 One decreased 25 
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Table 8  Candidate neuropsychological biomarkers investigated in at least two studies, with at least 
one positive finding, in relation to autism spectrum disorder (ASD) 
 

Biomarker 

Number of 

significant 

effects 

Number of 

non-

significant 

effects 

Direction 

Rate of 

replication 

(%) 

Long-term memory 2 0 Two decreased 100 

Short-term memory 5 0 Five decreased 100 

Working memory 4 1 Four decreased 80 

Face/emotion recognition 

accuracy 
3 1 Three decreased 75 

Reaction time variability 5 2 Five increased 71 

Ex-Gaussian tau 2 1 Two increased 67 

Motor coordination 2 1 Two decreased 67 

Other memory measures 3 2 Three decreased 60 

Other task accuracy measures 3 3 Three decreased 50 

Reaction time frequency 

measures 
2 4 Two increased 33 

Face/emotion recognition 

speed 
2 1 

Once increased, one 

decreased 
33 

Mean reaction time 1 8 One increased 11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


